MATH1520AB 2021-22 Tutorial 1 (week 2)

- 1. Let $X = \{1, \pi, \{0\}, \{e, \{1, \pi\}\}\}$. Which of the following are true? Justify your answer.
 - (a) $\{\{e, \{1, \pi\}\}\} \in X$
 - (b) $\{1, \pi, \{0\}, \{e, \{1, \pi\}\}\} \in X$
 - (c) $\{0\} \subseteq X$
 - (d) $\{1\} \subseteq X$
 - (e) $\{\{0\}\} \subseteq X$
 - (f) $\{\{\{0\}\}\} \subseteq X$

Answer.

- (a) No. The elements of X are $1, \pi, \{0\}, \{e, \{1, \pi\}\}\)$ and $\{\{e, \{1, \pi\}\}\}\)$ is not one of them.
- (b) No. Same reason as above.
- (c) No. Since 0 is not an element of X, $\{0\}$ is not a subset of X.
- (d) Yes. The only element in $\{1\}$ is 1 which is an element of X.
- (e) Yes. The only element in $\{\{0\}\}\$ is $\{0\}\$ which is an element of X.
- (f) No. The only element in $\{\{\{0\}\}\}\$ is $\{\{0\}\}\$ which is not in X.
- 2. Let $X = \{A, B, C, D\}$. List all the subsets of X. (Hint: Don't forget the empty set \emptyset .) Answer.

 $\emptyset, \{A\}, \{B\}, \{C\}, \{D\}, \{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}, \{C, D\}, \\ \{A, B, C\}, \{A, B, D\}, \{A, C, D\}, \{B, C, D\}, \{A, B, C, D\}$

3. Determine the natural domain of the following functions.

(a)
$$f(x) = \sqrt{-x^2 + 13x - 42}$$

(b) $f(x) = \frac{1}{-x^2 + 13x - 42}$

(b)
$$f(x) = \frac{1}{\ln(\sqrt{5-x})}$$

Answer.

(a)
$$f(x) = \sqrt{-x^2 + 13x - 42}$$

$$\Rightarrow -x^2 + 13x - 42 \ge 0$$

$$\Rightarrow x^2 - 13x + 42 \le 0$$

$$\Rightarrow (x - 6)(x - 7) \le 0$$

$$\Rightarrow 6 \le x \le 7$$

Hence, the natural domain is (6,7).
(b)
$$f(x) = \frac{1}{\ln(\sqrt{5-x})}$$

For ln to be well-defined, $\sqrt{5-x} > 0 \Rightarrow 5 - x > 0 \iff x < 5$
Also, $\ln(\sqrt{5-x}) \ne 0 \iff \sqrt{5-x} \ne 1 \iff 5 - x \ne 1 \iff x \ne 4$
Hence, the natural domain is $(-\infty, 5) \setminus \{4\} = (-\infty, 4) \cup (4, 5).$

4. Determine the range of $f : \mathbb{R} \to \mathbb{R}$, f(x) = |4 - x| - |x - 2|. Answer.

$$f(x) = \begin{cases} (4-x) + (x-2) = 2, & x < 2\\ (4-x) - (x-2) = -2x + 6, & 2 \le x < 4\\ -(4-x) - (x-2) = -2, & x > 4 \end{cases}$$

Therefore, the range of f is [-2, 2].

5. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by f(x) = mx + c where m and c are constants. If f(f(f(x))) = 27x + 26, find the value of m and c.

Answer.

$$f(f(f(x))) = 27x + 26$$
$$m(m(mx + c) + c) + c = 27x + 26$$
$$m^{3}x + m^{2}c + mc + c = 27x + 26$$

This implies $m^3 = 27$ and $m^2c + mc + c = 26$. So, m = 3. We have 9c + 3c + c = 26 and c = 2.